Регион Грязовец
Оглавление
Обработка нержавейки: термическая, химическая, термомеханическая
Производственные механизмы современных установок и агрегатов испытывают достаточно большие нагрузки на каждый конструктивный элемент. При высоком давлении, скоростях и определённом температурном режиме детали из обычных сталей могут достаточно быстро потерять свои производственные мощности и выйти из строя.
Именно поэтому работа в сложных условиях требует применение особых сплавов, к которым принадлежит нержавеющая сталь.
Одно из главных преимуществ «нержавейки» – сопротивление коррозии. Этим свойством она обязана хрому, который в размере 12 и более процентов содержится в составе нержавеющего сплава. В зависимости от содержания хрома может меняться устойчивость к коррозии – чем оно выше, тем выше и стойкость стали к коррозии. Нержавеющая сталь не ржавеет под воздействием атмосферных осадков, в солевых или щелочных растворах и некоторых газовых средах. Таким образом, главные достоинства нержавеющей стали – это высокая температура плавления, пластичность, высокое качество сварных соединений и простота обработки. За счёт этих характеристик ее используют во многих отраслях – в строительстве, медицине, пищевой промышленности, на производстве.
Чтобы добиться определенных механических свойств и придать сплаву нужную структуру в неё дополнительно вводят добавки никеля и молибдена.
Обработка нержавеющей стали не только дает возможность обеспечить изделиям из этого материала необходимые свойства и качества, но также гарантирует увеличение срока использования и способствует улучшению внешнего вида.
Выделяют три основных типа нержавеющей стали в зависимости от структуры:
- Ферритные стали – стали, которые имеют структуру феррита; в составе таких сплавов более 20% хрома и до 0,15% углерода, благодаря чему они имеют высокий уровень пластичности и обладают высокой устойчивостью к агрессивным средам. Ферритные стали образуются при низком содержании углерода и большом количестве легирующего элемента.
- Мартенситные и ферритно-мартенситные – в этих сплавах содержится до 17% хрома и до 0,5% углерода, такой вид сплавов имеет наибольшую прочность к влиянию агрессивной среды. В основном их используют для изделий, предназначенных работать на износ.
- Аустенитные (аустенитно-ферритные и аустенитно-мартенситные) коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. до 33% состоят из никеля и хрома.
Особенности обработки
Несмотря на то, что нержавейку обрабатывают уже более ста лет, этот процесс сопряжен с некоторыми технологическими сложностями.
Есть несколько факторов, которые могут затруднять механическое воздействие и обработку нержавеющих сталей. Они были изучены отечественными учеными-металловедами ещё во второй половине прошлого века и до сих пор являются теми факторами, которые нужно учитывать при выборе способа обработки.
-
Наклёп, самоупрочнение. Это важный признак нержавеющей стали, вызывающий дополнительные трудности во время её обработки – при неправильном выборе инструмента поверхность упрочняется (в области резания твёрдость может повыситься до 100%) и при следующем проходе инструмент уже срезает более твердый материал. Так происходит быстрый износ режущих кромок инструмента, ведущий к образованию проточин (сильно локализованные повреждения как на передней, так и на задней поверхности на уровне глубины резания).
-
Низкая теплопроводность. Теплопроводность нержавейки сравнительно невелика и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Это одна из важнейших особенностей, которая значительно усложняет работу с нержавейкой. Высокая температура в зоне резания приводит к быстрому износу инструмента. Однако именно низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция.
-
Высокая прочность. Известно, что нержавейка – это материал, в который добавили примеси, замедляющие или делающие невозможным процессы коррозии. Однако наличие в составе сплавов легирующих элементов может также затруднить обработку. В результате появляются значительные силы резания 1800-2850 Н/мм2.
-
Стружкодробление – разделение стружки на отдельные элементы (различных форм и размеров), которое происходит, если в стружке возникают напряжения, которые больше предельно допустимых для обрабатываемого материала. При обработке могут возникнуть проблемы контроля над стружкообразованием. Худший контроль над стружкодробленим происходит при обработке аустенитных и дуплексных нержавеек. Такое свойство стали как пластичность позволяет не ломаться при обработке, а завивается в длинную спираль.
-
Возникновение наростов, склонность к налипанию на поверхность резца, а также характерная для аустенитных и дуплексных марок вязкость. В ходе обработки нержавеющая сталь склонна налипать на режущую часть фрезы, что провоцирует образование нароста. Это отрицательно сказывается на резании, поскольку нарушается геометрия резца и увеличиваются усилия резания.
- Возникновение заусенцев. Отделившийся заусенец может стать причиной выхода из строя всей системы с самыми серьезными последствиями.
-
Воздействие разных химических элементов на обрабатываемость. Например, высокое содержание углерода увеличивается прочность и твёрдость, но в то же время способствует сильному износу по задней поверхности, обрабатываемость стали снижается. Сера, напротив, улучшает обрабатываемость, но снижает пластичность и ударную вязкость. При сварке сера является вредной примесью, которая оказывает неблагоприятное влияние на свариваемость и механические свойства стали. Эта особенность объясняет, почему наилучшую обрабатываемость имеют низкоуглеродистые стали.
-
Абразивность. В состав нержавейки входят микроскопические соединения карбида и интерметаллов, которые наделяют сталь особыми абразивными свойствами, вследствие чего стойкость инструментов резко снижается.
-
Неравномерное упрочнение. Несмотря на то, что эта особенность не слишком критично влияет на обработку небольших деталей, она может сказаться на качестве крупных валов и крупногабаритных элементов.
Так, вышеперечисленные особенности при обработке нержавеющей стали зачастую не позволяют набрать высокую скорость во многих рабочих процессах. Именно поэтому приходится уменьшать скорость и подачу – так получится обеспечить подходящую стойкость и добиться качественной поверхности стали.
В металлургии применяется три вида обработки стали: техническая, термомеханическая и химико-термическая.
Под термической обработкой называется совокупность операций нагрева, выдержки и охлаждения твёрдых металлических сплавов с целью получения заданных свойств. Так, основные параметры термической обработки – это температура и время. Именно правильный нагрев имеет большое значение в процессе термической обработки – перегрев делает структуру материала зернистой, а это не поддаётся исправлению.
В зависимости от температуры нагрева и скорости охлаждения различают следующие основные виды термической обработки:
-
Отжиг – это процесс, при котором происходит сначала нагрев металла, а затем постепенное медленное охлаждение. Такой температурный режим позволяет сформироваться кристаллической структуре до однородного состояния. В итоге сталь приобретает высокую пластичность и низкую твердость.
-
Нормализация – один из видов обработки сплавов, за которым следует вторая закалка и отпуск. Ее сущность заключается в улучшении физических и механических характеристик стали. Данная технология используется для снижения остаточных напряжений или повышения степени обрабатываемости материала различными методами.
-
Закалка проводится для увеличения прочности, твёрдости и износостойкости. При таком виде обработки металл сначала нагревается до высоких температур, способных изменить его структуру, а затем быстро охлаждается, чтобы он приобрел требуемый физико-химический состав и необходимую кристаллическую структуру. Именно этот метод обеспечивает получение требуемых эксплуатационных качеств закаливаемого металла. Главной задачей закалки является придание стали большей твердости.
-
Отпуск – это финальный процесс термической обработки изделия. Он осуществляется после закалки и позволяет снять остаточное напряжение стали, снизить её хрупкость, а также увеличить вязкость.
Следовательно, преимуществами термической обработки стали являются:
- Весомые изменения эксплуатационных свойств металлов
- Увеличение пластичности
- Повышенное сопротивление к изнашиванию/твёрдость
- Сохранение ударной вязкости
Для обработки используются специальные термические машины, которые позволяют изменять структуру именно в поверхностном слое на определенную глубину или же воздействовать только на часть заготовки.
Термомеханическая обработка металлов (ТМО) заключается в механической изменение формы при температуре, которая выше температуры фазового перехода. Способ сочетает в себе горячую прокатку (прокатка, при которой температура прокатки выше температуры рекристаллизации металла), волочение (процесс, при котором происходит протягивание заготовок через отверстия, которые сужаются) или штамповку с быстрой закалкой.
На сегодняшний день термомеханическая обработка выполняется по трем схемам:
-
Термообработка с деформационного нагрева с последующим низким отпуском или высокотемпературная термомеханическая обработка.
-
Термообработка, при которой операции горячей деформации и нагрева под закалку разделены – предварительная термомеханическая обработка.
-
Интенсивная пластическая деформация стали в температурном интервале устойчивого аустенитного состояния или низкотемпературная термомеханическая обработка.
Благодаря такому способу воздействия на металл, его прочность значительно повышается, а также достигается высокий комплекс механических свойств сталей и сплавов.
Химическая обработка нержавеющей стали – это процесс, при котором меняется не только поверхность сплава, но и структура металла с химическим составом. Такой тип обработки используется при необходимости получить деталь высокой прочности и твёрдости, сохранив при этом вязкость сердцевины. Характерные свойства такого металла – высокая устойчивость к коррозии, а также повышенная степень сопротивления. Химическая обработка производится посредством помещения детали в среду, которая содержит в себе атомы вещества, необходимые для покрытия стального листа.
-
Цементация – это внедрение в поверхностные слои углерода, процесс осуществляется под действием высоких температур. Цементация производится в твердых, жидких или газообразных средах, которые называются карбюризаторами.
-
Азотирование стали – это наполнение поверхностного слоя состава азотом. Это один из наиболее эффективных методов для повышения прочности сплавов.
-
Цианирование и нитроцементация стальных деталей – это насыщение поверхности стали азотом и углеродом. Основная задача этого вида обработки – увеличение твердости и повышенное сопротивление к изнашиванию.
-
Диффузионной металлизацией принято называть метод обработки сталей либо других металлов и сплавов, при которой поверхностный слой изменяется внедрением молекул других элементов. Метод применяется в целях повышения износоустойчивости и повышения стойкости к коррозии.